1,813 research outputs found

    Estimation of Spacecraft Attitude Motion and Vibrational Modes Using Simultaneous Dual-Latitude Ground-Based Data

    Get PDF
    Cutting-edge Space Situational Awareness (SSA) research calls for improved methods for rapidly characterizing resident space objects. In this thesis, this will take the form of speeding up convergence of spacecraft attitude estimates, and of a non-model-based approach to the detection of vibrational modes. Because attitude observability from photometric data is angle-based, dual-site simultaneous photometric observations of a resident space object are predicted to improve the convergence speed and steady-state error of spacecraft attitude state estimation from ground-based sensor data. Additionally, it is predicted that by adding polarimetric data to the measurements, the speed of convergence and steady-state error will be reduced further. This thesis models satellite motion and measurements from ground-based sensors for dual-latitude simultaneous light curve simulation, then develops a data fusion process to combine photometric, astrometric, and polarimetric data from both sites in order to more quickly estimate the attitude of an RSO. The Fractional Fourier Transform shows promise as a non-model-based approach to the detection of input vibrational frequencies from the degree of linear polarization. The main results are that dual-site observation geometry is conducive to slight improvements of attitude filter performance, and the addition of polarimetric data to the measurements yields much improved performance over both the single-site and dual-site cases

    Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations

    Get PDF
    Potential small Unmanned Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) operational scenarios/use cases and Detect And Avoid (DAA) approaches were collected through a number of industry wide data calls. Every 333 Exemption holder was solicited for this same information. Summary information from more than 5,000 exemption holders is documented, and the information received had varied level of detail but has given relevant experiential information to generalize use cases. A plan was developed and testing completed to assess Radio Line Of Sight (RLOS), a potential key limiting factors for safe BVLOS ops. Details of the equipment used, flight test area, test payload, and fixtures for testing at different altitudes is presented and the resulting comparison of a simplified mathematical model, an online modeling tool, and flight data are provided. An Operational Framework that defines the environment, conditions, constraints, and limitations under which the recommended requirements will enable sUAS operations BVLOS is presented. The framework includes strategies that can build upon Federal Aviation Administration (FAA) and industry actions that should result in an increase in BVLOS flights in the near term. Evaluating approaches to sUAS DAA was accomplished through five subtasks: literature review of pilot and ground observer see and avoid performance, survey of DAA criteria and recommended baseline performance, survey of existing/developing DAA technologies and performance, assessment of risks of selected DAA approaches, and flight testing. Pilot and ground observer see and avoid performance were evaluated through a literature review. Development of DAA criteria—the emphasis here being well clear— was accomplished through working with the Science And Research Panel (SARP) and through simulations of manned and unmanned aircraft interactions. Information regarding sUAS DAA approaches was collected through a literature review, requests for information, and direct interactions. These were analyzed through delineation of system type and definition of metrics and metric values. Risks associated with sUAS DAA systems were assessed by focusing on the Safety Risk Management (SRM) pillar of the SMS (Safety Management System) process. This effort (1) identified hazards related to the operation of sUAS in BVLOS, (2) offered a preliminary risk assessment considering existing controls, and (3) recommended additional controls and mitigations to further reduce risk to the lowest practical level. Finally, flight tests were conducted to collect preliminary data regarding well clear and DAA system hazards

    Rates Of Amyloid Imaging Positivity In Patients With Primary Progressive Aphasia

    Get PDF
    IMPORTANCE The ability to predict the pathology underlying different neurodegenerative syndromes is of critical importance owing to the advent of molecule-specific therapies. OBJECTIVE To determine the rates of positron emission tomography (PET) amyloid positivity in the main clinical variants of primary progressive aphasia (PPA). DESIGN, SETTING, AND PARTICIPANTS This prospective clinical-pathologic case series was conducted at a tertiary research clinic specialized in cognitive disorders. Patients were evaluated as part of a prospective, longitudinal research study between January 2002 and December 2015. Inclusion criteria included clinical diagnosis of PPA; availability of complete speech, language, and cognitive testing; magnetic resonance imaging performed within 6 months of the cognitive evaluation; and PET carbon 11-labeled Pittsburgh Compound-B or florbetapir F 18 brain scan results. Of 109 patients referred for evaluation of language symptoms who underwent amyloid brain imaging, 3 were excluded because of incomplete language evaluations, 5 for absence of significant aphasia, and 12 for presenting with significant initial symptoms outside of the language domain, leaving a cohort of 89 patients with PPA. MAIN OUTCOMES AND MEASURES Clinical, cognitive, neuroimaging, and pathology results. RESULTS Twenty-eight cases were classified as imaging-supported semantic variant PPA (11 women [39.3%]; mean [SD] age, 64 [7] years), 31 nonfluent/agrammatic variant PPA (22 women [71.0%]; mean [SD] age, 68 [7] years), 26 logopenic variant PPA (17 women [65.4%]; mean [SD] age, 63 [8] years), and 4 mixed PPA cases. Twenty-four of 28 patients with semantic variant PPA (86%) and 28 of 31 patients with nonfluent/agrammatic variant PPA (90%) had negative amyloid PET scan results, while 25 of 26 patients with logopenic variant PPA (96%) and 3 of 4 mixed PPA cases (75%) had positive scan results. The amyloid positive semantic variant PPA and nonfluent/agrammatic variant PPA cases with available autopsy data (2 of 4 and 2 of 3, respectively) all had a primary frontotemporal lobar degeneration and secondary Alzheimer disease pathologic diagnoses, whereas autopsy of 2 patients with amyloid PET-positive logopenic variant PPA confirmed Alzheimer disease. One mixed PPA patient with a negative amyloid PET scan had Pick disease at autopsy. CONCLUSIONS AND RELEVANCE Primary progressive aphasia variant diagnosis according to the current classification scheme is associated with Alzheimer disease biomarker status, with the logopenic variant being associated with carbon 11-labeled Pittsburgh Compound-B positivity in more than 95% of cases. Furthermore, in the presence of a clinical syndrome highly predictive of frontotemporal lobar degeneration pathology, biomarker positivity for Alzheimer disease may be associated more with mixed pathology rather than primary Alzheimer disease

    Antibody stabilization for thermally accelerated deep immunostaining

    Get PDF
    Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining

    Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA

    Get PDF
    Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neuro-degeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neuro-degeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention

    Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    Get PDF
    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≀ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of ‘smooth’ galaxies with parametric morphologies to select a sample of featureless discs at 1 ≀ z ≀ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Mþller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube
    • 

    corecore